Magnetotransport properties depending on the nanostructure of Fe(3)O(4) nanowires.

نویسندگان

  • M Abid
  • J-P Abid
  • S Jannin
  • S Serrano-Guisan
  • I Palaci
  • J-Ph Ansermet
چکیده

We have studied the magnetic behaviour of Fe(3)O(4) nanowires (NWs) with two different diameter ranges, above 150 nm and below 60 nm, made by electrodeposition techniques into a polymeric template. The nanowires were characterized using various techniques, in particular Mössbauer and thermoelectrical power measurements. The stoichiometric distribution of Fe cations showed clearly the presence of the magnetite inverse spinel electronic structure. Structural analysis performed using high-resolution transmission electron microscopy revealed two kinds of nanowire morphologies depending on the size. For nanowires above 150 nm in diameter, a contiguous network of well-bound nanoparticles was obtained. Instead, with a diameter of 60 nm, a polycrystalline structure was observed. The largest nanowires presented a magnetoresistance (MR) greater than 10%, whereas the thinner nanowires had almost none.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Properties of Ni0.3Fe0.7 Alloy Nanowires

The effect of length variation on the magnetic properties of NiFe alloy nanowires electrodeposited into the alumina template was investigated. The diameter (45±2.5 nm) and length (~ 1.9, 7.12, 8.3, 9.5 and 13.3 µm) of the nanowires were estimated from scanning electron microscopy images. Energy dispersive spectroscopy results showed Ni3Fe7 composition of the alloy nanowire...

متن کامل

Catalytic effect of Fe@Fe2O3 nanowires and Fenton process on carbamazepine removal from aqueous solutions using response surface methodology

Carbamazepine is one of the hydrophilic compounds identified in aquatic environments. Due to toxicity and bio-stability of this psychotropic pharmaceutical in the environment and humans, its removal efficiency and mineralization are important. In this study, synthesized Fe@Fe2O3 nanowires were applied to improve Fenton oxidation process using FeCl3.6H2</sub...

متن کامل

The effect of pulsed electrodeposition parameters on the microstructure and magnetic properties of the CoNi nanowires

CoNi nanowires were deposited by pulsed electrodeposition technique into porous alumina templates. The effect of off time between pulses (toff) and reductive/oxidative time (treduc/oxid) on the microstructure and magnetic properties of the CoNi nanowires were investigated. Maximum coercivity and squareness were obtained for samples fabricated at treduc/oxid= 0.5 ms and toff =400 ms. The coerciv...

متن کامل

Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition

High-quality cobalt nanowires have been grown by focused-electron-beam-induced deposition (FEBID) and their magnetic and transport properties determined. The nanowires contain up to about 95% Co atomic percentage, as measured by EDX spectroscopy, which remarkably represents a high value compared to other metal deposits grown by the same technique. The Co content has been found to correlate with...

متن کامل

Electrodeposited Co-Pi Catalyst on α-Fe2O3 Photoanode for Water-Splitting Applications

Optoelectronic properties of hematite (α-Fe2O3) as a photoanode and the required over-potential in photo-assisted water splitting has been improved by presence of Co-Pi on its surface. In order to increase the lifetime of the photogenerated holes and lower the applied bias, cobalt-phosphate (Co-Pi) on nanostructured α-Fe2O3 by electrodeposition was de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 18 26  شماره 

صفحات  -

تاریخ انتشار 2006